139k views
5 votes
The atmosphere on Venus consists mostly of CO2. The density of the atmosphere is 65.0 kg/m3 and the bulk modulus is 1.09 x 107 N/m2. A pipe on a lander is 75.0 cm long and closed at one end. When the wind blows across the open end, standing waves are caused in the pipe (like blowing across the top of a bottle). a) What is the speed of sound on Venus? b) What are the first three frequencies of standing waves in the pipe?

1 Answer

6 votes

Answer:

a. 409.5 m/s b. f₁ = 136.5 Hz, f₂ = 409.5 Hz, f₃ = 682.5 Hz

Step-by-step explanation:

a. The speed of sound v in a gas is v = √(B/ρ) where B = bulk modulus and ρ = density. Given that on Venus, B = 1.09 × 10⁷ N/m² and ρ = 65.0 kg/m³

So, v = √(B/ρ)

= √(1.09 × 10⁷ N/m²/65.0 kg/m³)

= √(0.01677 × 10⁷ Nm/kg)

= √(0.1677 × 10⁶ Nm/kg)

= 0.4095 × 10³ m/s

= 409.5 m/s

b. For a pipe open at one end, the frequency f = nv/4L where n = mode of wave = 1,3,5,.., v = speed of wave = 409.5 m/s and L = length of pipe = 75.0 cm = 0.75 m

Now, for the first mode or frequency, n = 1

f₁ = v/4L

= 409.5 m/s ÷ (4 × 0.75 m)

= 409,5 m/s ÷ 3 m

= 136.5 Hz

Now, for the second mode or frequency, n = 2

f₂ = 3v/4L

= 3 ×409.5 m/s ÷ (4 × 0.75 m)

= 3 × 409,5 m/s ÷ 3 m

= 3 × 136.5 Hz

= 409.5 Hz

Now, for the third mode or frequency, n = 5

f₃ = 5v/4L

= 5 × 409.5 m/s ÷ (4 × 0.75 m)

= 5 × 409,5 m/s ÷ 3 m

= 682.5 Hz

User Cheduardo
by
5.3k points