Answer:
The answer is below
Explanation:
The growth of the bacteria is in the form of an exponential growth. It is given by the formula:
![P(t)=ae^(rt)\\\\where\ t\ is\ the\ number\ of \ hours, P(t)\ is\ the \ population\ at\ t\ hours\\\and\ a=population\ at\ start]()
At 2 hours, the population is 62 cells, hence:
![P(2)=ae^(2r)\\\\62=ae^(2r)\ \ .\ \ .\ \ .\ (1)](https://img.qammunity.org/2021/formulas/mathematics/high-school/od7nm32zed7cpocekenp7bxwjndx5ckstb.png)
After another 2 hours (4 hours), the population is 1 million:
![P(4)=ae^(4r)\\\\1000000=ae^(4r)\ \ .\ \ .\ \ .\ (2)\\\\Divide \ equation\ 2\ by\ equation\ 1:\\\\(1000000)/(62)=(ae^(4r))/(ae^(2r)) \\\\16129=e^(2r)\\\\ln(e^(2r))=ln(16129)\\\\2r=9.688\\\\r=4.844](https://img.qammunity.org/2021/formulas/mathematics/high-school/zqaohtsw1ma3d64v087sddvzlhe2jtp24d.png)
Put r = 4.844 in equation 1
![62=ae^(2*4.844)\\\\62=16129a\\\\a=0.003844](https://img.qammunity.org/2021/formulas/mathematics/high-school/qqbnki5763w9ab959f4d0g11i1gug8gywy.png)
![P(t)=0.003844e^(4.844t)\\\\at \ start,t=0\\\\P(0)=0.003844](https://img.qammunity.org/2021/formulas/mathematics/high-school/rppkgyb5nziqvyt8w6qqigxohw6t2ne6oo.png)