Answer:
No these these result do not differ at 95% confidence level
Explanation:
From the question we are told that
The first concentrations is
![c _1= 30.0 \ g/m^3](https://img.qammunity.org/2021/formulas/mathematics/college/gpt3naqqamn1hn32qm7en9c26z5quzfvd4.png)
The second concentrations is
![c _2 = 52.9 \ g/m^3](https://img.qammunity.org/2021/formulas/mathematics/college/19bds1kmvztxq4olfa1dqjgexnjuo5vhmu.png)
The first sample size is
![n_1 = 32](https://img.qammunity.org/2021/formulas/mathematics/college/lmc2cug91xv0cgwozd05obnfdbyc7klmhz.png)
The second sample size is
![n_2 = 32](https://img.qammunity.org/2021/formulas/mathematics/college/ha05nugcaglfx992cjsrlp4p4jci5lnld9.png)
The first standard deviation is
![\sigma_1 = 30.0](https://img.qammunity.org/2021/formulas/mathematics/college/85gknla6766wxcbl9oxzgzf70xs7et5ink.png)
The first standard deviation is
![\sigma_1 = 29.0](https://img.qammunity.org/2021/formulas/mathematics/college/k58rpepqg1zjn7uyikgvsduya4n9vs93kx.png)
The mean for Turnpike is
![\= x _1 = (c_1)/(n) = (31.4)/(32) = 0.98125](https://img.qammunity.org/2021/formulas/mathematics/college/xmwuspz5u1p9rg1l8qkrs3pczkvs78pcso.png)
The mean for Tunnel is
![\= x _2 = (c_2)/(n) = (52.9)/(32) = 1.6531](https://img.qammunity.org/2021/formulas/mathematics/college/qps560qdxtl1u3xplnq0ccms9eyi3gs5lq.png)
The null hypothesis is
![H_o : \mu _1 - \mu_2 = 0](https://img.qammunity.org/2021/formulas/mathematics/college/2enodfs2cc8r1jau61pre48gjhfa6wdbsg.png)
The alternative hypothesis is
![H_a : \mu _1 - \mu_2 \\e 0](https://img.qammunity.org/2021/formulas/mathematics/college/e198q5d81b1skqh6omvt118jem9kie3pm6.png)
Generally the test statistics is mathematically represented as
![t = \frac{\= x_1 - \= x_2}{ \sqrt{(\sigma_1^2)/(n_1) +(\sigma_2^2)/(n_2) }}](https://img.qammunity.org/2021/formulas/mathematics/college/cx9ce028knta13c05jw5o5c2ihwixwteg1.png)
![t = \frac{0.98125 - 1.6531}{ \sqrt{(30^2)/(32) +(29^2)/(32) }}](https://img.qammunity.org/2021/formulas/mathematics/college/s1m4ppi1z5xk2ey33w2ic2lm1r8dqbw4yl.png)
![t = - 0.0899](https://img.qammunity.org/2021/formulas/mathematics/college/jbawrijcbuf2sbuls4auaqrsptcvo18m5f.png)
Generally the degree of freedom is mathematically represented as
![df = 32+ 32 - 2](https://img.qammunity.org/2021/formulas/mathematics/college/ssehfn4ndhojhhs2umi9pv2fyber4mnx24.png)
![df = 62](https://img.qammunity.org/2021/formulas/mathematics/college/ox6e752fc3bybmfa08rvtt47cm8cv0ig1k.png)
The significance
is evaluated as
![\alpha = (C - 100 )\%](https://img.qammunity.org/2021/formulas/mathematics/college/1zj4yorkz735covr0sf90lcu5w0stuwn1x.png)
=>
![\alpha = (95 - 100 )\%](https://img.qammunity.org/2021/formulas/mathematics/college/zsij2ukcsbgxg9hx38x7kcjtf4rh5ikphx.png)
=>
![\alpha =0.05](https://img.qammunity.org/2021/formulas/mathematics/college/8skuq08m6mn2kzbj9hw8ihf5rskybetrrs.png)
The critical value is evaluated as
![t_c = 2 * t_(0.05 , 62)](https://img.qammunity.org/2021/formulas/mathematics/college/mthlfhy61xjm9iyufud5ened3poxo2cao5.png)
From the student t- distribution table
![t_(0.05, 62) = 1.67](https://img.qammunity.org/2021/formulas/mathematics/college/mjlgy5n80gsmwlc1gvp6eth5hj7mtyfu40.png)
So
![t_c = 2 * 1.67](https://img.qammunity.org/2021/formulas/mathematics/college/31s5sf884ewttp76j3x865he9uqbc10jfr.png)
=>
![t_c = 3.34](https://img.qammunity.org/2021/formulas/mathematics/college/nxk125t4dbj9b2jnhx99kpebkntny7y3uz.png)
given that
we fail to reject the null hypothesis so this mean that the result do not differ