101k views
4 votes
Interest centers around the life of an electronic component. Let A be the event that the component fails a particular test and B be the event that the component displays strain but does not actually fail. Event A occurs with probability 0.39​​, and event B occurs with probability 0.24.

A) What is the probability that the component does not fail the​ test?
B) What is the probability that a component works perfectly well (i.e., neither displays strain nor fails the test)?
C) What is the probability that the component either fails or shows strain in the test?

User Goker
by
4.6k points

1 Answer

3 votes

Answer: a. 0.61

b. 0.37

c. 0.63

Explanation:

From the question,

P(A) = 0.39 and P(B) = 0.24

P(success) + P( failure) = 1

A) What is the probability that the component does not fail the​ test?

Since A is the event that the component fails a particular test, the probability that the component does not fail the​ test will be P(success). This will be:

= 1 - P(A)

= 1 - 0.39

= 0.61

B) What is the probability that a component works perfectly well (i.e., neither displays strain nor fails the test)?

This will be the probability that the component does not fail the​ test minus the event that the component displays strain but does not actually fail. This will be:

= [1 - P(A)] - P(B)

= 0.61 - 0.24

= 0.37

C) What is the probability that the component either fails or shows strain in the test?

This will simply be:

= 1 - P(probability that a component works perfectly well)

= 1 - 0.37

= 0.63

User Radek Wyroslak
by
5.3k points