Answer: 0.6812
Explanation:
Let p be the population proportion of trees are infested by a bark beetle.
As per given: p= 12%= 0.12
Sample size : n= 1000
Number of trees affected in sample = 1000
Sample proportion of trees are infested by a bark beetle. =
![\hat{p}=(127)/(1000)=0.127](https://img.qammunity.org/2021/formulas/mathematics/college/9f8ve8wj98yfu4eg9w6n5apxb92akysiks.png)
Now, the z-test statistic :
![z=\frac{\hat{p}-p}{\sqrt{(p(1-p))/(n)}}](https://img.qammunity.org/2021/formulas/mathematics/college/2rbgeky656pwhjubviwb2nh1krtabpsgfx.png)
So,
![z=\frac{0.127-0.12}{\sqrt{(0.12* 0.88)/(1000)}}](https://img.qammunity.org/2021/formulas/mathematics/college/ye3h9gf3i293a2ez5way94zj4bojbu539r.png)
![z=\frac{0.007}{\sqrt{(0.1056)/(1000)}}\\\\\\=(0.007)/(√(0.0001056))\\\\\\=(0.007)/(0.010276)\approx0.6812](https://img.qammunity.org/2021/formulas/mathematics/college/pzdcuseoupv631uok50g1arzwj6ca0s9ek.png)
Hence, the value of the z-test statistic = 0.6812 .