46.0k views
5 votes
Is
√(36) rational or irational. Why?

User MightyE
by
4.6k points

2 Answers

1 vote


\mathbf{Task. ~}\mathrm{Is} ~ √(36) ~ \mathrm{rational~or~irrational.~ Why?}


\mathbf{Rational~numbers~}\mathrm{are~numbers~that~can~be~represented~as~ordinary~ fractions.}


\mathrm{Examples \colon} ~ (1)/(2); \ 0{,}5; \ -1(2)/(3) ; \ 0{,}(3).


\mathrm{All~integers~are~rational~numbers \colon} ~ 0; ~ 6; ~ 121; ~ 1 \ 000 \ 000; ~ {-5}; ~ {-41}


\mathbf{Irrational~numbers~}\mathrm{are~numbers~that~are~not~rational.}


\mathrm{Examples \colon} ~ \pi, ~ e, ~ √(3), ~ \sqrt[3]{7}, ~ \log_(3)2


\mathrm{Since} ~ √(36) = 6 ~ \mathrm{then~it~is~a~rational~number.}


Answer \colon ~ \mathrm{rational~number}. ~ \blacktriangle

User JDMX
by
4.7k points
4 votes
The square root of 36 is a rational number. A rational number is a number that can be written as a fraction, a/b, where a and b are integers.
User Steve Cobb
by
5.2k points