182k views
3 votes
Complete the table below using the Midpoint and Distance Formulas.

Given: Mis the midpoint of
AB
Vertical Line Segment
Coordinates of A(2,4)
Coordinates of B(2,-6)
Coordinates of M. (_______),(_______)

Length of AB _________

Complete the table below using the Midpoint and Distance Formulas. Given: Mis the-example-1

1 Answer

4 votes

Answer:

Coordinates of M = (2, -1)

Length of AB = 10 units

Explanation:

Coordinates of the midpoint (M) of the distance between A(2, 4) and B(2, -6)


M((x_1 + x_2)/(2), (y_1 + y_2)/(2))

Let
A(2, 4) = (x_1, y_1)


B(2, -6) = (x_2, y_2)

Thus:


M((2 + 2)/(2), (4 +(-6))/(2))


M((4)/(2), (-2)/(2))


M(2, -1)

Length of AB:

Distance between A(2, 4) and B(2, -6):


AB = √((x_2 - x_1)^2 + (y_2 - y_1)^2)

Let,


A(2, 4) = (x_1, y_1)


B(2, -6) = (x_2, y_2)


AB = √((2 - 2)^2 + (-6 - 4)^2)


AB = √((0)^2 + (-10)^2)


AB = √(0 + 100) = √(100)


AB = 10

User Sachin Vas
by
4.4k points