182k views
3 votes
Complete the table below using the Midpoint and Distance Formulas.

Given: Mis the midpoint of
AB
Vertical Line Segment
Coordinates of A(2,4)
Coordinates of B(2,-6)
Coordinates of M. (_______),(_______)

Length of AB _________

Complete the table below using the Midpoint and Distance Formulas. Given: Mis the-example-1

1 Answer

4 votes

Answer:

Coordinates of M = (2, -1)

Length of AB = 10 units

Explanation:

Coordinates of the midpoint (M) of the distance between A(2, 4) and B(2, -6)


M((x_1 + x_2)/(2), (y_1 + y_2)/(2))

Let
A(2, 4) = (x_1, y_1)


B(2, -6) = (x_2, y_2)

Thus:


M((2 + 2)/(2), (4 +(-6))/(2))


M((4)/(2), (-2)/(2))


M(2, -1)

Length of AB:

Distance between A(2, 4) and B(2, -6):


AB = √((x_2 - x_1)^2 + (y_2 - y_1)^2)

Let,


A(2, 4) = (x_1, y_1)


B(2, -6) = (x_2, y_2)


AB = √((2 - 2)^2 + (-6 - 4)^2)


AB = √((0)^2 + (-10)^2)


AB = √(0 + 100) = √(100)


AB = 10

User Sachin Vas
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories