Answer:
![12√(3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/se3b4enjfrv65fs74jkzkqy01qp55ervbp.png)
On a keyboard, you would write 12*sqrt(3)
==============================================
Step-by-step explanation:
Find the prime factorization of 432 to get
432 = 2^4*3^3
That allows us to do the following steps
![√(432) = √(2^4*3^3)\\\\√(432) = √(2^2*2^2*3^2*3^1)\\\\√(432) = √(2^2)*√(2^2)*√(3^2)*√(3^1)\\\\√(432) = 2*2*3*√(3)\\\\√(432) = 12√(3)\\\\](https://img.qammunity.org/2021/formulas/mathematics/college/zbpuctt4frvslb9267ibtm407l4szj70ub.png)
------------------
Or you could do something like this
![√(432) = √(144*3)\\\\√(432) = √(144)*√(3)\\\\√(432) = 12√(3)\\\\](https://img.qammunity.org/2021/formulas/mathematics/college/mffa583u1i2ikz1k5w434te8ewirlua36i.png)