Answer:
The correct answers for the possible locations for the are;
(-9, 1)
(0, 0)
Explanation:
The coordinates of two of the three posts are given in feet as (-5, 4) and (2, 6)
The length of the available fencing = 25 feet
The length, l, of the segment between the coordinates of the two old posts vertices of the fence is given by the following equation;
![l = \sqrt{\left (y_(2)-y_(1) \right )^(2)+\left (x_(2)-x_(1) \right )^(2)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/143mb1g66sq0cuyzshjsodqj0npx20s2bp.png)
Where;
(x₁, y₁) = (-5, 4)
(x₂, y₂) = (2, 6)
![l = \sqrt{\left (6-4 \right )^(2)+\left (2-(-5) \right )^(2)} = √(53) \approx 7.25 \ feet](https://img.qammunity.org/2021/formulas/mathematics/high-school/8vxnqfywq9b7j21vwi2ptrb9xe9fnsra1n.png)
Given the coordinates of the third point as (x₃, y₃), we have;
Therefore, we have;
![\sqrt{\left (y_(3)-4 \right )^(2)+\left (x_(3)-(-5) \right )^(2)} + \sqrt{\left (y_(3)-6 \right )^(2)+\left (x_(3)-(2) \right )^(2)} = 25 - √(53)](https://img.qammunity.org/2021/formulas/mathematics/high-school/58yk70w1y24sqti4vifjwjny128tytoef1.png)
For the point (2, 6), we have;
![\sqrt{\left ((-6)-4 \right )^(2)+\left (2-(-5) \right )^(2)} + \sqrt{\left ((-6)-6 \right )^(2)+\left (2-(2) \right )^(2)} = 24.2 > 25-√(53)](https://img.qammunity.org/2021/formulas/mathematics/high-school/2035cedg6h4glxbyqbj7k1awcpl0h703ok.png)
For the point (-9, 1), we have;
![\sqrt{\left ((-6)-4 \right )^(2)+\left (2-(-5) \right )^(2)} + \sqrt{\left ((-6)-6 \right )^(2)+\left (2-(2) \right )^(2)} = 17.08 < 25-√(53)](https://img.qammunity.org/2021/formulas/mathematics/high-school/amu3ddujiybrd96aeu5qavsqg33wt0mazd.png)
For the point (0, 0), we have;
![\sqrt{\left ((0)-4 \right )^(2)+\left (0-(-5) \right )^(2)} + \sqrt{\left ((0)-6 \right )^(2)+\left (0-(2) \right )^(2)} = 12.73 < 25-√(53)](https://img.qammunity.org/2021/formulas/mathematics/high-school/2714vlhk0axfb05onsh6td8pei3aqttnib.png)
For the point (8, 8), we have;
![\sqrt{\left ((8)-4 \right )^(2)+\left (8-(-5) \right )^(2)} + \sqrt{\left ((8)-6 \right )^(2)+\left (8-(2) \right )^(2)} = 19.92 > 25-√(53)](https://img.qammunity.org/2021/formulas/mathematics/high-school/n8peild5ldytwgf8j0famuwvqq6d18ojyn.png)
For the point (-4, -5), we have;
![\sqrt{\left ((-5)-4 \right )^(2)+\left ((-4)-(-5) \right )^(2)} + \sqrt{\left ((-5)-6 \right )^(2)+\left ((-4)-(2) \right )^(2)} = 22.04 > 25-√(53)](https://img.qammunity.org/2021/formulas/mathematics/high-school/a33ezvosy8gkkhi18eh6cscw1s9htbpocs.png)
Therefore, the correct answers for the possible locations for the are (-9, 1) and (0, 0).