Answer:
Explanation:
From the information given:
Consider X to be the random variable denoting the bad debt ratios for Ohio Bank.
Then,
![X \sim N ( \mu, \sigma ^2)](https://img.qammunity.org/2021/formulas/mathematics/college/h0j2404tlrkmzgz3b0qd5rptbyqis3bpvv.png)
Thus the null hypothesis and the alternative can be computed as:
Null hypothesis:
![H_o : \mu \leq3.5\%](https://img.qammunity.org/2021/formulas/mathematics/college/hlwk8o1uyi2941ki80yypc2f1c6zlr67fh.png)
Alternative hypothesis
![H_1 : \mu > 3.5\%](https://img.qammunity.org/2021/formulas/mathematics/college/2desap56bi8uvgjhhkf89tquu8ynofdz20.png)
The type I and type II error is as follows:
Type I:
The mean bad debt ratio is > 3.5% when it is not
Type II:
The mean bad debt ratio is ≤ 3.5% when it is not.
The test statistics can be calculated by using the formula:
![t = (\overline x - \mu)/((\sigma)/(√(n)))](https://img.qammunity.org/2021/formulas/mathematics/college/buz98ynimxh5395ypaq8q88cdtf7g5tu78.png)
where;
sample size n = 7
mean = 6+8+5+9+7+5+8 = 48
sample mean
![\overline x =(48)/(7)](https://img.qammunity.org/2021/formulas/mathematics/college/nyayjol1ndy9artmjj4180n3zoj5wgj22o.png)
= 6.86
sample standard deviation is :
![s = \sqrt{(\sum( x -\overline x)^2)/(n-1)}](https://img.qammunity.org/2021/formulas/mathematics/college/stxfbi9dc4c10tsqp9fte11mprgnoc41p4.png)
![s = \sqrt{(( 6 -6.86)^2+( 8-6.86)^2+ ( 5 -6.86)^2 + ...+( 7 -6.86)^2+ ( 5 -6.86)^2+( 8 -6.86)^2 )/(7-1)}](https://img.qammunity.org/2021/formulas/mathematics/college/nfzod8z46e0t9hvesr7fjzdl8c9yoyf0ru.png)
s = 1.573
population mean
![\mu = 3.5](https://img.qammunity.org/2021/formulas/mathematics/college/f02djtnbq49ma43sqeoy2uhl0fwnhwuj8k.png)
Therefore, the test statistics is :
![t = (\overline x - \mu)/((\sigma)/(√(n)))](https://img.qammunity.org/2021/formulas/mathematics/college/buz98ynimxh5395ypaq8q88cdtf7g5tu78.png)
![t = (6.86- 3.5)/((1.573)/(√(7)))](https://img.qammunity.org/2021/formulas/mathematics/college/8jd0123829tnacd9c0ankeus60bdmkxn3x.png)
![t = (3.36)/((1.573)/(2.65))](https://img.qammunity.org/2021/formulas/mathematics/college/75k4kwja1wc0mwd1gay03c1a1j8o720rz3.png)
![t = \frac{3.36* {2.65}}{{1.573}}](https://img.qammunity.org/2021/formulas/mathematics/college/182mm3l79ryt5cd02nvuvf72zf1b31qfhq.png)
t = 5.660
At significance level of 0.01
P - value = P(T > 5.66)
P - value = 1 - (T < 5.66)
P - value = 1 - 0.9993
P-value = 0.0007
Therefore, since
, we reject the null hypothesis and conclude that the claim that the mean bad debt ratio for Ohio banks is higher than the mean for all financial institutions is true.