200,072 views
28 votes
28 votes
39-50 find the limit.
41.
\lim _(t \rightarrow 0) (\tan 6 t)/(\sin 2 t)

User Jotapdiez
by
2.9k points

1 Answer

15 votes
15 votes

Write tan in terms of sin and cos.


\displaystyle \lim_(t\to0)(\tan(6t))/(\sin(2t)) = \lim_(t\to0)(\sin(6t))/(\sin(2t)\cos(6t))

Recall that


\displaystyle \lim_(x\to0)\frac{\sin(x)}x = 1

Rewrite and expand the given limand as the product


\displaystyle \lim_(t\to0)(\sin(6t))/(\sin(2t)\cos(6t)) = \lim_(t\to0) (\sin(6t))/(6t) * (2t)/(\sin(2t)) * (6t)/(2t\cos(6t)) \\\\ = \left(\lim_(t\to0) (\sin(6t))/(6t)\right) * \left(\lim_(t\to0)(2t)/(\sin(2t))\right) * \left(\lim_(t\to0)(3)/(\cos(6t))\right)

Then using the known limit above, it follows that


\displaystyle \left(\lim_(t\to0) (\sin(6t))/(6t)\right) * \left(\lim_(t\to0)(2t)/(\sin(2t))\right) * \left(\lim_(t\to0)(3)/(\cos(6t))\right) = 1 * 1 * \frac3{\cos(0)} = \boxed{3}

User Frank Eno
by
2.4k points