Answer:
24.03 units (nearest hundredth)
Explanation:
The distance between B and A is: AB = AH + HB
We have been given AH, so we just need to find the measure of HB.
First, find the angle AOH using tan trig ratio:
![\sf \tan(\theta)=(O)/(A)](https://img.qammunity.org/2023/formulas/mathematics/high-school/v8d5uvohoive8xbpcvebs411fs5vgasgd6.png)
where:
is the angle- O is the side opposite the angle
- A is the side adjacent the angle
Given:
= ∠AOH- O = AH = 8
- A = OH = 19.80
![\implies \sf \tan(\angle AOH)=(8)/(19.8)](https://img.qammunity.org/2023/formulas/mathematics/college/euyf1uyltomsrxqaqgnhidegmsoojfrbge.png)
![\implies \sf \angle AOH = 22.00069835^(\circ)](https://img.qammunity.org/2023/formulas/mathematics/college/g7vjcbi19ohaqekorfwsy84v8orshj9zyc.png)
∠BOA = ∠BOH + ∠AOH
⇒ ∠BOH = ∠BOA - ∠AOH
⇒ ∠BOH = 61° - 22.00069835°
= 38.99930165°
Now we can find HB by again using the tan trig ratio:
Given:
= ∠BOH = 38.99930165°- O = HB
- A = OH = 19.80
Substituting given values:
![\implies \sf \tan(38.99930165^(\circ))=(HB)/(19.80)](https://img.qammunity.org/2023/formulas/mathematics/college/wezclo63vw47a0dshq1d2oatv6yr8zkhqh.png)
![\implies \sf HB=19.80 \tan(38.99930165^(\circ))](https://img.qammunity.org/2023/formulas/mathematics/college/6ebgdtkypl2mjosrhqsn8id8vh0qjrmshq.png)
![\implies \sf HB=16.03332427](https://img.qammunity.org/2023/formulas/mathematics/college/nj6nlg32robrau4fz82wqqf8wcvrx90uz8.png)
Therefore:
AB = AH + BH
⇒ AB = 8 + 16.03332427
= 24.03 units (nearest hundredth)