167k views
0 votes
Find the midpoint of the segment whose endpoints are (8,6) and (-2,-8).

(3,-1)
(5,7)
(7,-5)
(4,-1)

Geometry

1 Answer

0 votes

Answer:


\huge{ \fbox{ \sf{ \: ( \: 3 \: ,  \: - 1 \: )}}}

Explanation:


\star{ \sf { \: Let \: the \: points \:be \: A \: and \: B}}


\star{ \sf{ \: Let \: \: A (8,6) \: be \: (x1 \:, y1) and \: B(-2,-8) \: be \: (x2 \:, y2)}}


\underline{ \sf{Finding \: the \: midpoint}}


\boxed{ \rm{Midpoint \: = \: ( (x1 + x2)/(2) \: ,  \: (y1 + y2)/(2) )}}


\mapsto{ \sf{Midpoint = ( (8 + ( - 2))/(2) \: ,  \: (6 + ( - 8))/(2) )}}


\mapsto { \sf{Midpoint = ( (8 - 2)/(2) \: ,  \: (6 - 8)/(2) }})


\mapsto{ \sf{Midpoint = ( (6)/(2) \: ,  \: ( - 2)/(2)) }}


\mapsto{ \sf{Midpoint = (3 \: \: ,  - 1)}}

Hope I helped!

Best wishes!! :D

~
\sf{TheAnimeGirl}

User Danylo Korostil
by
7.8k points