Answer:
![=(x^2-3)(x^2-2)](https://img.qammunity.org/2021/formulas/mathematics/college/zfu0pmmgv5yvp2l791lv1i7q4se43m0nx9.png)
Explanation:
So we have the expression:
![x^4-5x^2+6](https://img.qammunity.org/2021/formulas/mathematics/college/64f3qcskprbjn2xlu3vqew3ugats4r1aic.png)
And we wish to factor it.
First, let's make a substitution. Let's let u be equal to x². Therefore, our expression is now:
![=u^2-5u+6](https://img.qammunity.org/2021/formulas/mathematics/college/q1yu7zbo31oybhncbuz3293a8w61tfa95o.png)
This is a technique called quadratic u-substitution. Now, we can factor in this form.
We can use the numbers -3 and -2. So:
![=u^2-2u-3u+6](https://img.qammunity.org/2021/formulas/mathematics/college/nqk4ihc8virnxgilrw7gb93zqo46ijxoi8.png)
For the first two terms, factor out a u.
For the last two terms, factor out a -3. So:
![=u(u-2)-3(u-2)](https://img.qammunity.org/2021/formulas/mathematics/college/6r4zvt47un9qi2pj9009mxutppnne5fru5.png)
Grouping:
![=(u-3)(u-2)](https://img.qammunity.org/2021/formulas/mathematics/college/w8vh380vi49t7dnmxlhnben1rjnmm82fs6.png)
Now, substitute back the x² for u:
![=(x^2-3)(x^2-2)](https://img.qammunity.org/2021/formulas/mathematics/college/zfu0pmmgv5yvp2l791lv1i7q4se43m0nx9.png)
And this is the simplest form.
And we're done!