Answer:
y=x, x axis, y=x, y axis
Explanation:
If a point A(x, y) is reflected along the y = x line, the new coordinates would be A'(y, x)
If a point A(x, y) is reflected across the x axis, the new coordinates would be A'(x, -y)
If a point A(x, y) is reflected along the y axis, the new coordinates would be A'(-x, y)
Firstly reflect Trapezoid ABCD along the y = x line to give:
A (-5, 1) ⇒ A'(1, -5). B (-4, 3) ⇒ B'(3, -4). C (-2, 3) ⇒C'(3, -2). D (-1, 1) ⇒ D'(1, -1)
Secondly reflect along the x axis to give:
A'(1, -5)⇒ A"(1,5). B'(3, -4)⇒ B"(3,4), C'(3, -2)⇒C"(3, 2), D'(1, -1) ⇒ D"(1, 1)
Thirdly reflect along the y = x line to give:
A"(1,5) ⇒ A"'(5, 1). B"(3,4) ⇒ B"'(4, 3). C"(3, 2) ⇒ C"'(2, 3). D"(1, 1) ⇒ D"'(1, 1)
Lastly reflect along the y axis to give:
A"'(5, 1) ⇒ A""(-5, 1), B"'(4, 3) ⇒ B""(-4, 3), C"'(2, 3) ⇒ C""(-2, 3), D"'(1, 1) ⇒ D""(-1.1)