Final answer:
The magnitude of the force on the +4Q charge, after replacing one of the original +Q charges and moving the charges three times farther apart, is calculated to be 4F/9 using Coulomb's Law. Therefore, the correct answer is D.
Step-by-step explanation:
The magnitude of the electrostatic force between two charges can be described by Coulomb's Law, which states that F = k × (q1 × q2) / r^2, where F is the force between the charges, k is Coulomb's constant, q1 and q2 are the magnitudes of the charges, and r is the distance between the centers of the two charges. Originally, two objects each with charge +Q exert a force of magnitude F on each other. After one charge is replaced with a +4Q charge and they are moved to be three times as far apart, the force on the +4Q charge can be calculated using the modified version of Coulomb's Law that takes into account the new charges and distance.
Using the original scenario as a reference, where F = k × (Q × Q) / r^2, when the charge is replaced and the distance is tripled, the new force F' = k × (Q × 4Q) / (3r)^2 = 4kQ^2 / 9r^2. By comparing F' with F, we find that F' = (4/9)F. Thus, the magnitude of the force on the +4Q charge is 4F/9.