Answer:
![x=(\ln(5)+1)/(\ln(2)-1)\approx-8.5039](https://img.qammunity.org/2021/formulas/mathematics/college/ochs10souf5tuzpqzwgk3t4k7ni2zhmyr4.png)
Explanation:
So we have the equation:
![2^x=5e^(x+1)](https://img.qammunity.org/2021/formulas/mathematics/college/cwz8gghcb90zu307ex0zxrvb3e21w50ib7.png)
Let's take the natural log of both sides:
![\ln(2^x)=\ln(5e^(x+1))](https://img.qammunity.org/2021/formulas/mathematics/college/9xk2yw4q7a4i2f13bx6e32au4ncepb8531.png)
On the left, we can move the x to the front:
![x\ln(2)=\ln(5e^(x+1))](https://img.qammunity.org/2021/formulas/mathematics/college/vwdznf41r5df6ng5217f5gf7gnaud24al4.png)
On the right, we can separate the logs:
![x\ln(2)=\ln(5)+\ln(e^(x+1))](https://img.qammunity.org/2021/formulas/mathematics/college/ze7tkz222ha0bc4sv5koa3kvuxv9ix6ed3.png)
For the second term on the right, move all the exponent stuff to the front:
![x\ln(2)=\ln(5)+(x+1)\ln(e)](https://img.qammunity.org/2021/formulas/mathematics/college/zuzvxnkgec4j9hzsrdskt91w7uwab67wiu.png)
The natural log of e is 1. So:
![x\ln(2)=\ln(5)+(x+1)(1)](https://img.qammunity.org/2021/formulas/mathematics/college/r28d5n50aznjl3vu5p713lhvb1acbt6gbm.png)
Simplify:
![x\ln(2)=\ln(5)+x+1](https://img.qammunity.org/2021/formulas/mathematics/college/jtlyk7z9w3ym5nc0hl2egaa1gnwqiswkeq.png)
Subtract x from both sides:
![x\ln(2)-x=\ln(5)+1](https://img.qammunity.org/2021/formulas/mathematics/college/lrkam3vri6uwhsdll7evshnc0l6brj41gw.png)
Factor out an x from the left:
![x(\ln(2)-1)=\ln(5)+1](https://img.qammunity.org/2021/formulas/mathematics/college/ck8kpyzdhzkmbp5b8c7vycxdsx61qo5twx.png)
Divide both sides by the equation in the factor:
![x=(\ln(5)+1)/(\ln(2)-1)](https://img.qammunity.org/2021/formulas/mathematics/college/22zp71iphtlqssabdvt9l39u97bwdgo635.png)
So, our answer is:
![x=(\ln(5)+1)/(\ln(2)-1)\approx-8.5039](https://img.qammunity.org/2021/formulas/mathematics/college/ochs10souf5tuzpqzwgk3t4k7ni2zhmyr4.png)
And we're done!