214k views
2 votes
Find the absolute mean deviation for the set {X, 2x, 3x, 4x}

User Iti
by
4.5k points

1 Answer

1 vote

Given:

Data set =
\{x, 2x, 3x, 4x\}

To find:

The absolute mean deviation for the given set.

Solution:

We have,

Data set =
\{x, 2x, 3x, 4x\}

Mean of the data set is


Mean=(\sum x_i)/(n)


Mean=(x+2x+3x+4x)/(4)


Mean=(10x)/(4)


Mean=2.5x

Now,

The formula for mean absolute deviation (MAD) is


MAD=(\sum |x_i-\overline x|)/(n)


MAD=(|x-2.5x|+|2x-2.5x|+|3x-2.5x|+|4x-2.5x|)/(4)


MAD=(|-1.5x|+|-0.5x|+|0.5x|+|1.5x|)/(4)


MAD=(1.5x+0.5x+0.5x+1.5x)/(4)


MAD=(4x)/(4)


MAD=x

Therefore, the mean absolute deviation for the given set of data is x.

User ErikEJ
by
4.8k points