Answer:
The solution of the problem is
Explanation:
First we will write the characteristic equation which is
![x^(2) -4x + 8 = 0](https://img.qammunity.org/2021/formulas/mathematics/college/byyahrwaosrut4ay05duz98oyh1lyyqb3a.png)
Now, we will solve this quadratic equation using the general formula.
Given a quadratic equation of the form,
, then
From the general formula,
or
From the characteristic equation,
and
![c = 8](https://img.qammunity.org/2021/formulas/mathematics/college/32scbillwqp6czubsgk1wws70ky4m0aeno.png)
Hence,
or
![x = \frac{-(-4)-\sqrt{(-4)^(2)-4(1)(8) } }{2(1)}](https://img.qammunity.org/2021/formulas/mathematics/college/3zj30j5i3jcvsx5ttain542lu9b1k3pd2t.png)
or
![x = (4-√(-16) )/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/c9jln1ygten0ly6vbhxqr1hrrxymrv911i.png)
or
![x = (2-4i )/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/nnj7inzhnia7qr7ti1dwmagq1rtpxx0bjy.png)
or
![x = 2 - 2i](https://img.qammunity.org/2021/formulas/mathematics/college/cyohvlv8hjru8jrmx2mt1o43ny9gbz4jtj.png)
That is,
=
±
![2i](https://img.qammunity.org/2021/formulas/mathematics/high-school/5vq6gh1ufmni9l6y54r2o7yaygnsgeb98o.png)
Then,
and
![x_(2) = 2 - 2i](https://img.qammunity.org/2021/formulas/mathematics/college/3l8r0kej30n73zemflly1a3drpmh7mtlcg.png)
These are the roots of the characteristic equation
The roots of the characteristic equation are complex, that is, in the form
(
±
).
For the general solution,
If the roots of a characteristic equation are in the form (
±
), the general solution is given by
![y(t) = C_(1)e^(\alpha t) cos(\beta t) + C_(2)e^(\alpha t) sin(\beta t)](https://img.qammunity.org/2021/formulas/mathematics/college/fxufaqxod7z0lot611z70fq8htbcfits32.png)
From the characteristic equation,
and
![\beta = 2](https://img.qammunity.org/2021/formulas/mathematics/college/1yc6a6l283uoirzl2do05h5nw7utubfejq.png)
Then, the general solution becomes
![y(t) = C_(1)e^(2 t) cos(2 t) + C_(2)e^(2 t) sin(2t)](https://img.qammunity.org/2021/formulas/mathematics/college/hlqnwdjuu09y8h5v67cuoxdq0r7z0fmy8r.png)
Now, we will determine
![y'(t)](https://img.qammunity.org/2021/formulas/mathematics/college/ixda3qfs6i6afs2zbne19kv2rbzkfsplv5.png)
![y'(t) = 2C_(1)e^(2 t) cos(2 t) - 2C_(1)e^(2t)sin(2t) + 2C_(2) e^(2t)sin(2t) +2C_(2)e^(2t)cos(2t)](https://img.qammunity.org/2021/formulas/mathematics/college/bp7b3uy5jqz0ka1y9r8chxa9gtivbmnrp2.png)
From the question,
y(0) = 1
and
y'(0) = 2
Then,
![1 = y(0) = C_(1)e^(2 (0)) cos(2 (0)) + C_(2)e^(2 (0)) sin(2(0))](https://img.qammunity.org/2021/formulas/mathematics/college/wwjoquybl4322c86l6x086bf8x8mm96ddz.png)
![1 = C_(1)e^( 0) cos(0) + C_(2)e^(0) sin(0)](https://img.qammunity.org/2021/formulas/mathematics/college/abdbvkitlqh62sriaqg28bc5r15hryfhum.png)
(NOTE:
and
)
Then,
![1 = C_(1)](https://img.qammunity.org/2021/formulas/mathematics/college/psla2fnw9cubtpjb9xg6s7fdkhe37djpc1.png)
∴
![C_(1) = 1](https://img.qammunity.org/2021/formulas/mathematics/college/swiizc9dli40ljwk321yi9qn2f5oqzv34u.png)
Also,
![2 = y'(0) = 2C_(1)e^(2 (0)) cos(2 (0)) - 2C_(1)e^(2(0))sin(2(0)) + 2C_(2) e^(2(0))sin(2(0)) +2C_(2)e^(2(0))cos(2(0))](https://img.qammunity.org/2021/formulas/mathematics/college/pk0isnc07u8rt0a67gol9p9266g2mmpex8.png)
![2 = 2C_(1)e^(0) cos(0) - 2C_(1)e^(0)sin(0) + 2C_(2) e^(0)sin(0) +2C_(2)e^(0)cos(0)](https://img.qammunity.org/2021/formulas/mathematics/college/jxhkncspff9ublzb0rfw5a7rsvd885po27.png)
![2 = 2C_(1) +2C_(2)](https://img.qammunity.org/2021/formulas/mathematics/college/yrvbk7zk33rtdxx2twxczrkykaqsyx7u2c.png)
Then,
![1 = C_(1) +C_(2)](https://img.qammunity.org/2021/formulas/mathematics/college/fhytanrlnhp9erwrq66gcc77siximigunw.png)
![C_(2) = 1 - C_(1)](https://img.qammunity.org/2021/formulas/mathematics/college/69hrcxjlmwoaawmf4cbks4el7l9r65ufa9.png)
Recall,
![C_(1) = 1](https://img.qammunity.org/2021/formulas/mathematics/college/swiizc9dli40ljwk321yi9qn2f5oqzv34u.png)
∴
![C_(2) = 1 - 1 = 0](https://img.qammunity.org/2021/formulas/mathematics/college/6nl8fxr7urn267d06fgjfaakci41uv94ei.png)
![C_(2) = 0](https://img.qammunity.org/2021/formulas/mathematics/college/2y0qjbmbom8tfexq7f7hfe3chkjscue84l.png)
Hence, the solution becomes