21.5k views
2 votes
Find the absolute maximum and absolute minimum values of f on the given interval. f(t) = 2 cos(t) + sin(2t),[0, π/2].

User Acobster
by
6.2k points

1 Answer

5 votes

Answer:

The absolute maximum is
\frac{3\sqrt 3}2 and the absolute minimum value is
0.

Explanation:

Differentiate of
f both sides w.r.t.
t,


f(t)=2 \cos t+\sin 2t


\Rightarrow f'(t)=-2\sin t+2\cos 2t

Now take
f'(t)=0


\Rightarrow -2\sin t+2\cos 2t=0


\Rightarrow 2\cos 2t=2\sin t


\Rightarrow \cos 2t=\sin t


\Rightarrow 1-2\sin ^2t =\sin t \quad \quad [\because \cos 2t = 1-2\sin ^2t]


\Rightarrow 2\sin ^2t+\sin t-1=0


\Rightarrow 2\sin ^2t+2\sin t-\sin t-1=0


\Rightarrow 2\sin t(\sin t+1)-1(\sin t+1)=0


\Rightarrow (\sin t+1)(2\sin t-1)=0


\Rightarrow \sin t+1=0 \;\text{and}\; 2\sin t-1=0


\Rightarrow \sin t =-1 \;\text{and}\; \sin t =\frac 12

In the interval
0\leq t\leq \frac {\pi}2, the answer to this problem is
\frac {\pi}6

Now find the second derivative of
f(t) w.r.t.
t,


f''(t)=-2\cos t-4\sin 2t


\Rightarrow \left[f''(t)\right]_{t=\frac {\pi}6}=-2* \frac {\sqrt 3}2-4* \frac{\sqrt 3}2=-3\sqrt 3

Thus,
f(t) is maximum at
t=\frac {\pi}6 and minimum at
t=0


\left[f(t)\right]_{t=\frac {\pi}6}=2* \frac {\sqrt 3}2+\frac{\sqrt 3}2=\frac{3\sqrt 3}2\;\text{and}\;\left[f(t)\right]_{t=\frac{\pi}2}= 2* 0+0=0

Hence, the absolute maximum is
\frac{3\sqrt 3}2 and the absolute minimum value is
0.

User Dinesh Raja
by
5.7k points