Answer:
![pH=5.31](https://img.qammunity.org/2021/formulas/chemistry/college/awvh5l3u5w4s06c7ifdq512nf2fucuc0f5.png)
Step-by-step explanation:
Hello,
In this case, by considering the Henderson-Hasselbach equation:
![pH=pKa+log(([base])/([acid]) )](https://img.qammunity.org/2021/formulas/chemistry/college/8dmrsjloj30y2yhkiycsj9lw9h9a6w3h5m.png)
We can compute the pH before the addition of the NaOH:
![pH=-log(1.52x10^(-5))+log(([0.288M)/(0.149M) )\\\\pH=5.10](https://img.qammunity.org/2021/formulas/chemistry/college/5y6s8lav6cai0e85jxo6gghftadvupjb43.png)
Nevertheless, if 0.061 moles of NaOH are added, we first need to compute the present moles of butanoic acid and sodium butanoate:
![n_(acid)=0.149mol/L*1.41L=0.210mol\\\\n_(base)=0.288mol/L*1.41L=0.406mol](https://img.qammunity.org/2021/formulas/chemistry/college/sy0ks36qgcg19bxjpxbaov4aa7l7xlcnkp.png)
So the moles of acid and base after the addition are:
![n_(acid)=0.210mol-0.061mol=0.149mol\\\\n_(base)=0.406mol+0.061mol=0.467mol](https://img.qammunity.org/2021/formulas/chemistry/college/tow3kyqxmi8pngqs0vxocjxhi5u2p1vfxm.png)
And the concentrations in the same volume:
![[acid]=(0.149mol)/(1.41L) =0.106M](https://img.qammunity.org/2021/formulas/chemistry/college/vql0g1ehzwow9numz2mxhthncdqlt491i8.png)
![[base]=(0.467mol)/(1.41L) =0.331M](https://img.qammunity.org/2021/formulas/chemistry/college/ol2chxdar3h1as5hew87j7f6xz96wazvpj.png)
Thus, the new pH is:
![pH=-log(1.52x10^(-5))+log(([0.331M)/(0.106M) )\\\\pH=5.31](https://img.qammunity.org/2021/formulas/chemistry/college/8rp932jdctbjztemplsh5njxmlstxdu0v2.png)
Which is a difference of pH of 0.21.
Best regards.