Answer:
Option B - The induced current flows counter-clockwise.
Step-by-step explanation:
Faraday's law of electromagnetic induction states that whenever a conductor is placed in a changing magnetic field, an electromotive force is induced and that if the conductor circuit is closed, a current is induced which is the induced current. The magnitude of the EMF induced in the coil is therefore proportional to the rate of change of magnetic flux throughout the coil.
Meanwhile, the direction of the induced current is given by Lenz's law which states that the direction of the induced current will oppose the change in electromagnetic force that produced that current.
Since the magnetic field points upwards, the induced current will move in a direction to the left which is counterclockwise