Answer:
![P(White\ n\ Blue) = (1)/(8)](https://img.qammunity.org/2021/formulas/mathematics/high-school/2bkx9cnfcrpdh9exkan1j5h0ua3uj118mw.png)
Explanation:
Given
Scarves: 1 green; 1 white
Hats: 1 blue; 1 red; 1 yellow; 1 purple
Required
Determine the probability of 1 blue hat and 1 white scarf
First, we need to determine the probability of blue hat
![Total\ Hats = 4](https://img.qammunity.org/2021/formulas/mathematics/high-school/vo5h6l0rkmkcedjn5uso6lb1dlm53104ap.png)
![Blue\ Hats = 1](https://img.qammunity.org/2021/formulas/mathematics/high-school/wrouk4882r2vrycfy2gxq89axe3mhc7xs1.png)
Hence;
![P(Blue) = (1)/(4)](https://img.qammunity.org/2021/formulas/mathematics/high-school/uac61qm3chtxji8rnmzcg5yvhzg81gb25w.png)
Next, we determine probability of white scarf
![Total\ Scarfs = 2](https://img.qammunity.org/2021/formulas/mathematics/high-school/u3thx8kkxkvw3fts6mhxzxydyj8eimniim.png)
![White\ Scarfs = 1](https://img.qammunity.org/2021/formulas/mathematics/high-school/1bhlbtyzkkgiqefz618kgefb9wqgeqsbkk.png)
![P(White) = (1)/(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/p7e0emufpg107zxcr481wtkap941edu0v0.png)
Calculating the required probability;
![P(White\ n\ Blue) = P(White) * P(Blue)](https://img.qammunity.org/2021/formulas/mathematics/high-school/w0dzxlim1yvzqgmcnh4fqxmk7o4psz7o0i.png)
![P(White\ n\ Blue) = (1)/(4) * (1)/(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/ow37xetz5yzgomjder88z1yswwvton1zqa.png)
![P(White\ n\ Blue) = (1)/(8)](https://img.qammunity.org/2021/formulas/mathematics/high-school/2bkx9cnfcrpdh9exkan1j5h0ua3uj118mw.png)