181k views
2 votes
Identify the roots of gx= x2+3x-4 x^2-4x+29

1 Answer

2 votes

Answer:

x1=1

x2= -4

x3= (2 + 5i)

x4= (2 - 5i)

Explanation:

STEP 1-

Find the roots of the first term.

(x^2 + 3x -4)=0

Then group the terms that contain the same variable, and move the constant to the opposite side of the equation.

(x^2 + 3x)=4

Complete the square. Remember to balance the equation by adding the same constants to each side.

(x^2 + 3x + 1.5^2)=4 + 1.5^2

(x^2 + 3x + 1.5^2)=6.25

Rewrite as perfect squares

(x + 1.5)^2=6.25

Square root both sides.

(x + 1.5) = (+/-)2.5

x= -1.5(+/-)2.5

x= -1.5 + 2.5 = 1

x= -1.5 + 2.5= -4

so the factored form of the first term.

(x^2 + 3x + 4) = (x - 1) (x + 4)

STEP 2-

Find the roots of the second term

(x^2 - 4x + 29)= 0

Group terms that contain the same variable, and move the constant to the opposite side of the equation

(x^2 - 4x)= -29

Complete the square. Remember to balance the equation by adding the same constants to each side

(x^2 - 4x + 4) = - 29 + 4

(x^2 -4x + 4) = -25

Rewrite as perfect squares

(x - 2)^2 = -25

Remember that

i = square root of -1

Square root both sides

(x - 2) = (+/-)5i

x= 2 (+/-)5i

x= 2 + 5i

x= 2 - 5i

so the factored form of the second term is

(x^2 - 4x + 29) = (x - (2 + 5i))(x - (2 - 5i))

STEP 3-

Substitute the factored form of the first and second term in g(x)

g(x) = (x-1)(x + 4)(x- (2+ 5i))(x- ( 2-5i)

there for you have your answers

User Swagata Prateek
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.