97.1k views
5 votes
NEED HELP ASAP PLEASE What is the area of a rectangle with a length of 3xy and a width of 14x^2y

1 Answer

3 votes

Answer:


\boxed{ \bold{ \huge{ \boxed{ \sf{42 {x}^(3) {y}^(2) }}}}}

Explanation:


\star{ \text{ \: Length \: of \: a \: rectangle \: ( \: l \: ) \: = \: 3xy}}


\star{ \sf{ \: Width \: of \: a \: rectangle \: ( \: w \: ) = 14 {x}^(2)y}}


\underline{ \sf{Finding \: the \: area \: of \: a \: rectangle \: }}


\boxed{ \sf{Area \: of \: a \: rectangle = length \: \: * \: width}}


\dashrightarrow{ \sf{Area \: of \: a \: rectangle = 3xy * 14 {x}^(2) y}}


\text{Step \: 1 \: : Multiply \: the \: numbers \: and \: variables \: separately}


\dashrightarrow{ \sf{ (3 * 14) \: * \: x \: * \: {x}^(2) \: * \: y \: * \: y}}


\dashrightarrow{ \sf{42 * \: x \: * \: {x}^(2) \: * \: y \: * \: y}}


\text{step \: 2 \: : Add \: the \: power \: of \: the \: variables \: with \: same \: base.}


\dashrightarrow{ \sf{42* {x}^(1 + 2) \: * \: {y}^(1 + 1) }}


\dashrightarrow{ \sf{42 {x}^(3) {y}^(2) }}

The area of a rectangle = 42 x³ y²


\text{Hope \: I \: helped!}


\text{Best \: wishes!}

~
\text{TheAnimeGirl}

User MarkV
by
8.2k points