97.1k views
5 votes
NEED HELP ASAP PLEASE What is the area of a rectangle with a length of 3xy and a width of 14x^2y

1 Answer

3 votes

Answer:


\boxed{ \bold{ \huge{ \boxed{ \sf{42 {x}^(3) {y}^(2) }}}}}

Explanation:


\star{ \text{ \: Length \: of \: a \: rectangle \: ( \: l \: ) \: = \: 3xy}}


\star{ \sf{ \: Width \: of \: a \: rectangle \: ( \: w \: ) = 14 {x}^(2)y}}


\underline{ \sf{Finding \: the \: area \: of \: a \: rectangle \: }}


\boxed{ \sf{Area \: of \: a \: rectangle = length \: \: * \: width}}


\dashrightarrow{ \sf{Area \: of \: a \: rectangle = 3xy * 14 {x}^(2) y}}


\text{Step \: 1 \: : Multiply \: the \: numbers \: and \: variables \: separately}


\dashrightarrow{ \sf{ (3 * 14) \: * \: x \: * \: {x}^(2) \: * \: y \: * \: y}}


\dashrightarrow{ \sf{42 * \: x \: * \: {x}^(2) \: * \: y \: * \: y}}


\text{step \: 2 \: : Add \: the \: power \: of \: the \: variables \: with \: same \: base.}


\dashrightarrow{ \sf{42* {x}^(1 + 2) \: * \: {y}^(1 + 1) }}


\dashrightarrow{ \sf{42 {x}^(3) {y}^(2) }}

The area of a rectangle = 42 x³ y²


\text{Hope \: I \: helped!}


\text{Best \: wishes!}

~
\text{TheAnimeGirl}

User MarkV
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories