108k views
4 votes
Please help me to prove this!
I need is no.(c). So, please help me do it.


Please help me to prove this! I need is no.(c). So, please help me do it. ​-example-1

1 Answer

5 votes

Answer: see proof below

Explanation:

Given: A + B + C = 90° → A + B = 90° - C

→ C = 90° - (A + B)

Use the Double Angle Identity: cos 2A = 1 - 2 sin² A

→ sin² A = (1 - cos 2A)/2

Use Sum to Product Identity: cos A + cos B = 2 cos [(A + B)/2] · cos [(A - B)/2]

Use the Product to Sum Identity: cos (A - B) - cos (A + B) = 2 sin A · sin B

Use the Cofunction Identities: cos (90° - A) = sin A

sin (90° - A) = cos A

Proof LHS → RHS:

LHS: sin² A + sin² B + sin² C


\text{Double Angle:}\qquad (1-\cos 2A)/(2)+(1-\cos 2B)/(2)+\sin^2 C\\\\\\.\qquad \qquad \qquad =(1)/(2)\bigg(2-\cos 2A-\cos 2B\bigg)+\sin^2 C\\\\\\.\qquad \qquad \qquad =1-(1)/(2)\bigg(\cos 2A+\cos 2B\bigg)+\sin^2 C


\text{Sum to Product:}\quad 1-(1)/(2)\bigg[2\cos \bigg((2A+2B)/(2)\bigg)\cdot \cos \bigg((2A-2B)/(2)\bigg)\bigg]+\sin^2 C\\\\\\.\qquad \qquad \qquad =1-\cos (A+B)\cdot \cos (A-B)+\sin^2 C

Given: 1 - cos (90° - C) · cos (A - B) + sin² C

Cofunction: 1 - sin C · cos (A - B) + sin² C

Factor: 1 - sin C [cos (A - B) + sin C]

Given: 1 - sin C[cos (A - B) - sin (90° - (A + B))]

Cofunction: 1 - sin C[cos (A - B) - cos (A + B)]

Sum to Product: 1 - sin C [2 sin A · sin B]

= 1 - 2 sin A · sin B · sin C

LHS = RHS: 1 - 2 sin A · sin B · sin C = 1 - 2 sin A · sin B · sin C
\checkmark

Please help me to prove this! I need is no.(c). So, please help me do it. ​-example-1
Please help me to prove this! I need is no.(c). So, please help me do it. ​-example-2
User Ulvi
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories