160k views
1 vote
(sec(x) sin^2(x)) / (1 + sec(x)) simplifyy pls

1 Answer

4 votes

Answer:


1-\cos \left(x\right)

Explanation:


(\sec \left(x\right)\sin ^2\left(x\right))/(1+\sec \left(x\right))

Use the identity:
\sec \left(x\right)=(1)/(\cos \left(x\right))


((1)/(\cos \left(x\right))\sin ^2\left(x\right))/(1+(1)/(\cos \left(x\right)))


((1)/(\cos \left(x\right))\sin ^2\left(x\right))/((\cos \left(x\right)+1)/(\cos \left(x\right)))


((\sin ^2\left(x\right))/(\cos \left(x\right)))/((\cos \left(x\right)+1)/(\cos \left(x\right)))

Divide them using
((a)/(b))/((c)/(d))=(a* d)/(b* c)


(\sin ^2\left(x\right)\cos \left(x\right))/(\cos \left(x\right)\left(\cos \left(x\right)+1\right))

Cancel cos(x):


(\sin ^2\left(x\right))/(\cos \left(x\right)+1)

Use the identity:
\sin ^2\left(x\right)=1-\cos ^2\left(x\right)


(1-\cos ^2\left(x\right))/(1+\cos \left(x\right))


(-\left(\cos ^2\left(x\right)-1\right))/(1+cos(x))

Use the difference of squares formula:


-(\left(\cos \left(x\right)+1\right)\left(\cos \left(x\right)-1\right))/(1+\cos \left(x\right))

Cancel out 1+cos(x):


-\left(\cos \left(x\right)-1\right)

Remove outer bracket:


-\cos \left(x\right)+1


1-cos(x)

User Anton Chikin
by
6.5k points