Answer:
P(x < 3) = 0.42319
Explanation:
From the given information:
The mean density
3
Let x be the random variable that follows a Poisson distribution.
Therefore:
for x =1, 2, 3...
However, the probability that a random quadrat contains less than 3 spatuletails can be computed as:
![\mathtt{P(x <3 ) = (e^(-3)3 ^0)/(0!)+ (e^(-3)3 ^1)/(1!)+ (e^(-3) 3 ^2)/(2!) }](https://img.qammunity.org/2021/formulas/mathematics/college/jfc1acjapzhgilceu4aiqkltrvrdeha9x4.png)
![\mathtt{P(x <3 ) =e^(-3) \begin{pmatrix} (3 ^0)/(0!)+ (3 ^1)/(1!)+ (3 ^2)/(2!) \end {pmatrix} }](https://img.qammunity.org/2021/formulas/mathematics/college/abrrmjsjeozwcyb7yls0o72uf6680m7by8.png)
![\mathtt{P(x <3 ) =e^(-3) \begin{pmatrix} (1)/(1)+ (3 )/(1)+ (9)/(2) \end {pmatrix} }](https://img.qammunity.org/2021/formulas/mathematics/college/lpsq982plthfy7co9cdfcvxfgfcu9go1eh.png)
![\mathtt{P(x <3 ) =e^(-3) \begin{pmatrix} 1+3+ 4.5 \end {pmatrix} }](https://img.qammunity.org/2021/formulas/mathematics/college/5p4fbd4m4i7f8tgzi2u89jn702fe43top2.png)
![\mathtt{P(x <3 ) =e^(-3) \begin{pmatrix}8.5 \end {pmatrix} }](https://img.qammunity.org/2021/formulas/mathematics/college/t2n8ybbqxvhwx6pdhfufzhg3hiouh679zi.png)
P(x < 3) = 0.42319