52.2k views
1 vote
Median of 2.5, 2.3, 2.3, 1.8, 2.3, 1.5 please help its due today ;(

2 Answers

4 votes

Answer:


\boxed{ \bold{ \huge{ \boxed{ \sf{2.3}}}}}

Explanation:


\star{ \tt{ \: Given \: data}} :


\sf{2.5 \: , \: 2.3 \: , \: 2.3 \: , \: 1.8 \: , \: 2.3 \: , \: 1.5}


\star{ \sf{ \: Arranging \: the \: given \: data \: in \: ascending \: order}} :


\sf{1.5 \: , \: 1.8 \: , \: 2.3 \: , \: 2.3 \: , \: 2.3 \: , \: 2.5}


\star{ \sf{ \: n \: ( \: Total \: number \: of \: observation \: ) \: = \: 6}}

Finding the position of median


\bold{ \boxed{ \sf{ \: Position \: of \: median = ( (n + 1)/(2) ) ^(th) item}}}


\longmapsto{ \sf{position \: of \: median = ( (6 + 1)/(2) ) ^(th) item}}


\longmapsto{ \sf{position \: of \: median \: = \: ( (7)/(2) ) ^(th) item}}


\longmapsto {\sf{position \: of \: median = {3.5}^(th) item}}


\sf{ {3.5}^(th) } item is the average of 3rd and 4th items.


\sf{∴Median = \frac{ {3}^(rd) item + {4}^(th) item}{2} }


\longmapsto{ \sf{median = (2.3 + 2.3)/(2)}}


\longmapsto{ \sf{median = (4.6)/(2) }}


\longmapsto{ \sf{median = 2.3}}

∴ Median = 2.3

-------------------------------------------------------------


\star \: \underline{ \tt{Remember ! }}

▪️If n is odd , the median is the value of the
\sf{( (n + 1)/(2) ) ^(th) } observation.

▪️If n is even, the median is the average of
\sf{( (n)/(2) ) ^(th)} and
\sf{( (n)/(2) + 1) ^(th) } observation.

Hope I helped!

Best regards! :D

~TheAnimeGirl

User JustinBlaber
by
4.9k points
1 vote

Answer:

I got 2.3

Explanation:

line them up in order and count from the outside

User Mansi  Teharia
by
4.7k points