208k views
1 vote
Find the real roots of

\frac{18}{ {x}^(4) } + \frac{1}{ {x}^(2) } = 4


2 Answers

5 votes

see the photos above given

Find the real roots of \frac{18}{ {x}^(4) } + \frac{1}{ {x}^(2) } = 4 ​-example-1
User Max Romanovsky
by
4.7k points
5 votes

Answer:


$x^2=(9)/(4) \implies x=\pm (3)/(2) $


$x^2=-2 \implies x=\pm√(-2) \implies x=\pm√(2i) $

The solutions are


$\{-(3)/(2),(3)/(2), -√(2i), √(2i) \}$

The Real roots are


$\{-(3)/(2),(3)/(2)\}$

Explanation:


$(18)/(x^4) +(1)/(x^2)=4$

Multiply both sides by
x^4


$x^4(18)/(x^4) +x^4(1)/(x^2)=4\cdot x^4$


$18+x^2=4x^4$


4x^4-x^2-18=0

Substitute
x^2=t


4t^2-t-18=0

Solving the quadratic equation using the quadratic formula:


$t=(-(-1)\pm √((-1)^2-4\cdot 4(-18)))/(2\cdot 4)$


$t=(1\pm √(289))/(8)$


$t=(1\pm 17)/(8)$


$t_1=(9)/(4)$


t_2=-2

Now we have to solve for
x^2=t


$x^2=(9)/(4) \implies x=\pm (3)/(2) $


$x^2=-2 \implies x=\pm√(-2) \implies x=\pm√(2i) $

User Fabianfetik
by
5.2k points