208k views
1 vote
Find the real roots of

\frac{18}{ {x}^(4) } + \frac{1}{ {x}^(2) } = 4


2 Answers

5 votes

see the photos above given

Find the real roots of \frac{18}{ {x}^(4) } + \frac{1}{ {x}^(2) } = 4 ​-example-1
User Max Romanovsky
by
7.4k points
5 votes

Answer:


$x^2=(9)/(4) \implies x=\pm (3)/(2) $


$x^2=-2 \implies x=\pm√(-2) \implies x=\pm√(2i) $

The solutions are


$\{-(3)/(2),(3)/(2), -√(2i), √(2i) \}$

The Real roots are


$\{-(3)/(2),(3)/(2)\}$

Explanation:


$(18)/(x^4) +(1)/(x^2)=4$

Multiply both sides by
x^4


$x^4(18)/(x^4) +x^4(1)/(x^2)=4\cdot x^4$


$18+x^2=4x^4$


4x^4-x^2-18=0

Substitute
x^2=t


4t^2-t-18=0

Solving the quadratic equation using the quadratic formula:


$t=(-(-1)\pm √((-1)^2-4\cdot 4(-18)))/(2\cdot 4)$


$t=(1\pm √(289))/(8)$


$t=(1\pm 17)/(8)$


$t_1=(9)/(4)$


t_2=-2

Now we have to solve for
x^2=t


$x^2=(9)/(4) \implies x=\pm (3)/(2) $


$x^2=-2 \implies x=\pm√(-2) \implies x=\pm√(2i) $

User Fabianfetik
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories