143k views
1 vote
Find the perimeter P of ▱JKLM with vertices J(−3,−2), K(−5,−5), L(1,−5), and M(3,−2). Round your answer to the nearest tenth, if necessary.

User Kadija
by
4.7k points

1 Answer

1 vote

Given:

Vertices of JKLM are J(−3,−2), K(−5,−5), L(1,−5), and M(3,−2).

To find:

The perimeter P of a parallelogram JKLM.

Solution:

Distance formula:


D=√((x_2-x_1)^2+(y_2-y_1)^2)

Using distance formula, we get


JK=√(\left(-5-\left(-3\right)\right)^2+\left(-5-\left(-2\right)\right)^2)


JK=√(\left(-5+3\right)^2+\left(-5+2\right)^2)


JK=√(\left(-2\right)^2+\left(-3\right)^2)


JK=√(4+9)


JK=√(13)

Similarly,


KL=√(\left(1-\left(-5\right)\right)^2+\left(-5-\left(-5\right)\right)^2)=6


LM=√(\left(3-1\right)^2+\left(-2-\left(-5\right)\right)^2)=√(13)


JM=√(\left(3-\left(-3\right)\right)^2+\left(-2-\left(-2\right)\right)^2)=6

Now, perimeter P of ▱JKLM is


P=JK+KL+LM+JM


P=√(13)+6+√(13)+6


P=2√(13)+12


P=2(3.61)+12


P=7.22+12


P=19.22


P\approx 19.2

Therefore, the perimeter P of ▱JKLM is 19.2 units.

User AndreLDM
by
5.1k points