Answer: 2 meters.
Explanation:
Let w = width of the cement path.
Dimensions of pool : Length = 15 meters , width = 9 meters
Area of pool = length x width = 15 x 9 = 135 square meters
Along width cement path, the length of region =

width =

Area of road with pool =


Area of road = (Area of road with pool ) -(area of pool)
![\Rightarrow\ 112 =4w^2+48w+135- 135\\\\\Rightarrow\ 112= 4w^2+48w\\\\\Rightarrow\ 4 w^2+48w-112=0\\\\\Rightarrow\ w^2+12w-28=0\ \ \ [\text{Divide both sides by 4}]\\\\\Rightarrow\ w^2+14w-2w-28=0\\\\\Rightarrow\ w(w+14)-2(w+14)=0\\\\\Rightarrow\ (w+14)(w-2)=0\\\\\Rightarrow\ w=-14\ or \ w=2](https://img.qammunity.org/2021/formulas/mathematics/college/t8bjbowe7n2absiuoew9oaj7tqjkjzrfgt.png)
width cannot be negative, so w=2 meters
Hence, the width of the road = 2 meters.