181k views
3 votes
If 3^1-x +3^1+x = 90, Find the value of x

1 Answer

4 votes

Answer:


x=\log_3{(15+ 4√(14))}\approx3.0949\text{ or } \\x=\log_3{(15- 4√(14))}\approx-3.0949

Explanation:

So we have the equation:


3^(1-x)+3^(1+x)=90

First, note that this is the same as:


3\cdot 3^(-x)+3\cdot 3^x=90

Factor out a 3:


3(3^(-x)+3^(x))=90

Divide both sides by 3:


3^(-x)+3^x=30

Change the negative exponent into a fraction:


(1)/(3^x)+3^x=30

Multiply both sides by 3^x:


3^x((1)/(3^x)+3^x)=(30)(3^x)

Distribute:


(1)+(3^x)^2=30(3^x)

Let u equal 3^x. So:


1+u^2=30u

Subtract 30u from both sides:


u^2-30u+1=0

This is a quadratic. Solve using the quadratic formula. A is 1, b is -30, and c is 1. So:


u=(-b\pm √(b^2-4ac))/(2a)

Substitute:


u=(-(-30)\pm √((-30)^2-4(1)(1)))/(2(1))

Simplify:


u=(30\pm √(900-4))/(2)

Subtract:


u=(30\pm √(896))/(2)

Simplify:


u=(30\pm 8√(14))/(2)

Simplify:


u=15\pm 4√(14)

Substitute back u:


3^x=15\pm 4√(14)

Take the log to base 3 of both sides:


\log_3{3^x}=\log_3{15\pm 4√(14)}

The left side cancels:


x=\log_3{15\pm 4√(14)}

So, our solutions are:


x=\log_3{(15+ 4√(14))}\approx3.0949\text{ or } \\x=\log_3{(15- 4√(14))}\approx-3.0949

And we're done!

User Bob Kuhar
by
3.8k points