107k views
2 votes
Please help me to prove this!!!


Please help me to prove this!!! ​-example-1

1 Answer

7 votes

Answer: see proof below

Explanation:

Given: A + B + C = π → A + B = π - C

→ A + C = π - B

Use the Cofunction Identities: sin (π - A) = sin A

sin (A - π/2) = cos A

cos (π/2 - A) = - sin A

Use the Power Reducing Identity: sin ² A - sin² B = sin (A + B) · sin (A - B)

Use the Sum to Product Identity:

sin A - sin B = 2 [cos (A + B)/2] · [sin (A - B)/2]

Proof LHS → RHS:

LHS: sin² A - sin² B - sin² C

= (sin² A - sin² B) - sin² C

Power Reducing: sin (A + B) · sin (A - B) - sin² C

Given: sin (π - C) · sin (A - B) - sin² C

Cofunction: sin C · sin (A - B) - sin² C

Factor: sin C [sin (A - B) - sin C]


\text{Sum to Product:}\qquad \sin C\bigg[2\cos \bigg(((A-B)+C)/(2)\bigg)\cdot \sin \bigg(((A-B)-C)/(2)\bigg)\bigg]\\\\\\.\qquad \qquad \qquad \qquad =2\sin C\bigg[\cos \bigg(((A+C)-B)/(2)\bigg)\cdot \sin \bigg((A-(B+C))/(2)\bigg)\bigg]


\text{Given:}\qquad \qquad 2\sin C\bigg[\cos \bigg(((\pi - B)-B)/(2)\bigg)\cdot \sin \bigg((A-(\pi - A))/(2)\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =2\sin C\bigg[\cos \bigg((\pi -2B)/(2)\bigg)\cdot \sin \bigg((2A-\pi)/(2)\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =2\sin C\bigg[\cos \bigg((\pi)/(2) -B}\bigg)\cdot \sin \bigg(A-(\pi)/(2)\bigg)\bigg]

Cofunction: 2 sin C (-sin B) · (cos A)

= -2 sin C · sin B · cos A

= -2 cos A · sin B · sin C

LHS = RHS: -2 cos A · sin B · sin C = -2 cos A · sin B · sin C
\checkmark

Please help me to prove this!!! ​-example-1
Please help me to prove this!!! ​-example-2
User Premprakash
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories