198k views
3 votes
Find all points on the curve x=4cos(t),y=4sin(t) that have the slope of 12.

User Sina Sh
by
4.3k points

1 Answer

6 votes

Answer:


\left (-(4)/(√(5)),(8)/(√(5))\right )\text{ and }\left ((4)/(√(5)),-(8)/(√(5))\right ).

Explanation:

We need to find all the points on the curve x=4cos(t),y=4sin(t) that have the slope of 1/2.


x=4cos (t)


(dx)/(dt)=-4sin (t)


y=4sin (t)


(dy)/(dt)=4cos (t)

Now,


(dy)/(dx)=(dy)/(dt)* (dt)/(dx)


(dy)/(dx)=4cos (t)* (1)/(-4sin (t))


(dy)/(dx)=-\cot t

So, slope of the curve is
-\cot t.


-\cot t=(1)/(2)


-\tan t=2


\tan t=-2 ...(1)

Using
\sec^2t=1+\tan^2t, we get


\sec^2t=1+(-2)^2


\sec^2t=1+4


\sec t=\pm √(5)


\cos t=\pm (1)/(√(5))

Now,


\sin^2t=1-cos^2t


\sin t=\pm \sqrt{1-(1)/(5)}


\sin t=\pm \sqrt{(4)/(5)}


\sin t=\pm (2)/(√(5))

It equation (1), tan(t) is negative. So, sin and cos have different signs.

If
\sin t= (2)/(√(5)), then
\cos t=- (1)/(√(5)).


x=4cos (t)=-(4)/(√(5))


y=4sin (t)=(8)/(√(5))

If
\sin t=- (2)/(√(5)), then
\cos t= (1)/(√(5)).


x=4cos (t)=(4)/(√(5))


y=4sin (t)=-(8)/(√(5))

Therefore, the two points are
\left (-(4)/(√(5)),(8)/(√(5))\right )\text{ and }\left ((4)/(√(5)),-(8)/(√(5))\right ).

User Sourav Singh
by
4.3k points