Answer:
16tan(8θ)sec²(8θ)
Explanation:
Given the question :
Find the derivative of the function. y = tan2(8θ)
y = tan²(8θ)
USing chain rule :
dy/dx = (du/dx) × (dv/du) × (dy/dv)
Let u = 8θ ; du/dθ = 8
v = tan u ; dv/du = sec²u
y = v² ; dy/dv = 2v
Hence,
(dy/dθ) × dv/du × dy/dv
8 * sec²u * 2v
Where v = tan u ; u = 8θ
8 * sec²8θ * 2tan8θ
16tan(8θ)sec²(8θ)