Answer:
The area of surface is
![(2)/(3)(10^{(3)/(2)}-1)\pi](https://img.qammunity.org/2021/formulas/mathematics/college/4mynn2rjtfg1985ql2elwfi39yw6a0wgtd.png)
Explanation:
Given that,
The equation of cylinder is
![x^2+y^2=9](https://img.qammunity.org/2021/formulas/mathematics/college/gkcqst1uc33ukun1dsy574oey8f6yvddgu.png)
The part of the surface z = xy
The coordinates is,
![z_(x)=y](https://img.qammunity.org/2021/formulas/mathematics/college/s94jtxuqe63jusqa8ylq6jovfouipkrwxf.png)
![z_(y)=x](https://img.qammunity.org/2021/formulas/mathematics/college/xfrdice8tclr76d1c6b9bs1xt390iqs8nk.png)
We need to calculate the value of ds
Using formula of ds
![ds=\sqrt{1+z_(x)^2+z_(y)^2}dA](https://img.qammunity.org/2021/formulas/mathematics/college/8qr9vkmmqksxfi2wt5wlnhp7rw82pgogl0.png)
Put the value in to the formula
....(I)
We know that.
The polar coordinates,
![x=r\cos\theta](https://img.qammunity.org/2021/formulas/mathematics/college/58ioxg9y1dalbufldgjqdlr417rherhs79.png)
![y=r\sin\theta](https://img.qammunity.org/2021/formulas/mathematics/college/3px7tnh7hlcrmvuo3udy9e1j2kb4nn33qp.png)
The general equation of cylinder is
![x^2+y^2=r^2](https://img.qammunity.org/2021/formulas/mathematics/college/mzoxhounncykpnlo5ytxohirrh4brjl17k.png)
compare from given equation
![x^2+y^2=3^2](https://img.qammunity.org/2021/formulas/mathematics/college/hamhqhcbrfbr3g2pesb5s79lgqodkxwibi.png)
0<=θ<=2π, 0<=r<=3
Area element in polar coordinates is,
![dA=r dr d\theta](https://img.qammunity.org/2021/formulas/mathematics/college/fixs4myoxjmyb1mbgcz2gqnl8quis4swhg.png)
Put the value of dA in equation (I)
....(II)
We need to calculate the area of surface
Using equation (II)
![s=\int_(0)^(2\pi)\int_(0)^(3)√(1+r^2)r dr d\theta](https://img.qammunity.org/2021/formulas/mathematics/college/paylrg9frf7vdosyoxrg2ed83pswx70t3y.png)
![s=\int_(0)^(2\pi)(1)/(3)((1+r^2)^{(3)/(2)})_(0)^(3)d\theta](https://img.qammunity.org/2021/formulas/mathematics/college/y3tltqb3z68wmonj8yen73s2mv3kqera7c.png)
![s=\int_(0)^(2\pi)(1)/(3)((1+3^2)^{(3)/(2)}-(1+0^2)^{(3)/(2)})d\theta](https://img.qammunity.org/2021/formulas/mathematics/college/zcjf3he2dlanq6cdwq2j7oru14c9veqojy.png)
![s=((1)/(3)((10)^{(3)/(2)}-1)\theta)_(0)^(2\pi)](https://img.qammunity.org/2021/formulas/mathematics/college/myt4g8dt4otgirudpojh9573mjj2ohb9vj.png)
![s=(1)/(3)(10^{(3)/(2)}-1)(2\pi-0)](https://img.qammunity.org/2021/formulas/mathematics/college/vnk4ynfxpwud8vijmibn4u9xrvtaugldx3.png)
![s=(2)/(3)(10^{(3)/(2)}-1)\pi](https://img.qammunity.org/2021/formulas/mathematics/college/go49o17qdko2bwl6pzmsxhl8urifri6l8m.png)
Hence, The area of surface is
![(2)/(3)(10^{(3)/(2)}-1)\pi](https://img.qammunity.org/2021/formulas/mathematics/college/4mynn2rjtfg1985ql2elwfi39yw6a0wgtd.png)