210k views
1 vote
Perform the row operation 1/3R1 and replace R1 on the following matrix

[3 0 0|21]
[0 6 0|5]
[0 0 7|5]

1 Answer

5 votes

Answer:


\left[\left.\begin{matrix}1 & 0 & 0\\ 0 & 6 & 0\\ 0 & 0 & 7\end{matrix}\right|\begin{matrix}7\\ 5\\ 5\end{matrix}\right]

Explanation:

The given augmented matrix is


\left[\left.\begin{matrix}3 & 0 & 0\\ 0 & 6 & 0\\ 0 & 0 & 7\end{matrix}\right|\begin{matrix}21\\ 5\\ 5\end{matrix}\right]

Here, we need to perform the row operation
(1)/(3)R_1 and replace
R_1 in the above matrix.

So, divide each element of
R_1 in the given matrix and other elements remain same.


\left[\left.\begin{matrix}(3)/(3) & (0)/(3) & (0)/(3)\\ 0 & 6 & 0\\ 0 & 0 & 7\end{matrix}\right|\begin{matrix}(21)/(3)\\ 5\\ 5\end{matrix}\right]


\left[\left.\begin{matrix}1 & 0 & 0\\ 0 & 6 & 0\\ 0 & 0 & 7\end{matrix}\right|\begin{matrix}7\\ 5\\ 5\end{matrix}\right]

Therefore, the required matrix is
\left[\left.\begin{matrix}1 & 0 & 0\\ 0 & 6 & 0\\ 0 & 0 & 7\end{matrix}\right|\begin{matrix}7\\ 5\\ 5\end{matrix}\right].

User Don Duvall
by
5.0k points