It looks like the system is supposed to be
![\mathbf x'=\begin{bmatrix}0&-1\\2&3\end{bmatrix}\mathbf x+\begin{bmatrix}e^t\\e^(-t)\end{bmatrix}](https://img.qammunity.org/2021/formulas/mathematics/college/wne447bxdvfx67w5gh610n0l1reqhz5r41.png)
with the initial condition,
.
Compute the eigensystem for the coefficient matrix:
![\begin{vmatrix}-\lambda&-1\\2&3-\lambda\end{vmatrix}=\lambda^2-3\lambda+2=(\lambda-1)(\lambda-2)=0](https://img.qammunity.org/2021/formulas/mathematics/college/7ozba3tch96qipg04z4tbzhnhq97yw6vpk.png)
![\lambda_1=1\implies\begin{bmatrix}-1&-1\\2&2\end{vmatrix}\mathbf v_1=\mathbf 0\implies\mathbf v_1=\begin{bmatrix}1\\-1\end{bmatrix}](https://img.qammunity.org/2021/formulas/mathematics/college/ux1dlilysaxxszjdenoa1lck2038ndj9jg.png)
![\lambda=2\implies\begin{bmatrix}-2&-2\\2&1\end{bmatrix}\mathbf v_2=\mathbf 0\implies\mathbf v_2=\begin{bmatrix}1\\-2\end{bmatrix}](https://img.qammunity.org/2021/formulas/mathematics/college/v099slbhypot5yhssd8wohl1ar2dm2gd52.png)
So we have the characteristic solution,
![\mathbf x_c=C_1e^(\lambda_1t)\mathbf v_1+C_2e^(\lambda_2t)\mathbf v_2](https://img.qammunity.org/2021/formulas/mathematics/college/znlxcvz7wv7tiqk5ji4s3nh3zh703jur6z.png)
![\mathbf x_c=C_1e^t\begin{bmatrix}1\\-1\end{bmatrix}+C_2e^(2t)\begin{bmatrix}1\\-2\end{bmatrix}](https://img.qammunity.org/2021/formulas/mathematics/college/473ttthw92r8vadhv979xzh1laz759mo06.png)
For the non-homogeneous part, we can guess a particular solution of the form
![\mathbf x_p=te^t\begin{bmatrix}a\\b\end{bmatrix}](https://img.qammunity.org/2021/formulas/mathematics/college/blqbu93pnfj0v3z40rdltxgfux13a0n6ed.png)
(We might have started with
instead, but that is already accounted for in the first characteristic solution.)
Its derivative is
![{\mathbf x_p}'=e^t\begin{bmatrix}a\\b\end{bmatrix}+te^t\begin{bmatrix}a\\b\end{bmatrix}=e^t\begin{bmatrix}at+a\\bt+b\end{bmatrix}](https://img.qammunity.org/2021/formulas/mathematics/college/5lyv2uzgolmwjyijxvyld0l2nywzf3b1jj.png)
Substitute
into the system and solve for
:
![e^t\begin{bmatrix}at+a\\bt+b\end{bmatrix}=te^t\begin{bmatrix}0&-1\\2&3\end{bmatrix}\begin{bmatrix}a\\b\end{bmatrix}+e^t\begin{bmatrix}1\\-1\end{bmatrix}](https://img.qammunity.org/2021/formulas/mathematics/college/gi9g57ztbk93pmhvzyk9exkkna6q6nq0q3.png)
![\begin{bmatrix}at+a\\bt+b\end{bmatrix}=\begin{bmatrix}-bt+1\\(2a+3b)t-1\end{bmatrix}](https://img.qammunity.org/2021/formulas/mathematics/college/n69k10q1ny7w2hv08dp7nsluqm7ikss54w.png)
![\implies a=1,b=-1](https://img.qammunity.org/2021/formulas/mathematics/college/9vfd27brz8akdh35zxa51g4w98pn29e4sh.png)
and so the particular solution is
![\mathbf x_p=te^t\begin{bmatrix}1\\-1\end{bmatrix}](https://img.qammunity.org/2021/formulas/mathematics/college/6ala6kc3hw5dl6hngvb0lovw9jws685btz.png)
The general solution to the system is then
![\mathbf x=\mathbf x_c+\mathbf x_p](https://img.qammunity.org/2021/formulas/mathematics/college/8ue3nz2msd4a40q90jxrwwaiovsvbueb8k.png)
![\mathbf x=C_1e^t\begin{bmatrix}1\\-1\end{bmatrix}+C_2e^(2t)\begin{bmatrix}1\\-2\end{bmatrix}+te^t\begin{bmatrix}1\\-1\end{bmatrix}](https://img.qammunity.org/2021/formulas/mathematics/college/pmjebaxsmgf8904z5k0f45oemu21m30hz8.png)
Use the given initial conditions to solve for the remaining coefficients.
![\mathbf x(0)=\begin{bmatrix}5\\4\end{bmatrix}](https://img.qammunity.org/2021/formulas/mathematics/college/txvt2l7qthoykgg67tx78yr2qaswkuhhl2.png)
![\implies\begin{bmatrix}5\\4\end{bmatrix}=C_1\begin{bmatrix}1\\-1\end{bmatrix}+C_2\begin{bmatrix}1\\-2\end{bmatrix}](https://img.qammunity.org/2021/formulas/mathematics/college/9inkieakd5s5m91c9zf14ijpndr9rp2c85.png)
![\implies C_1=14,C_2=-9](https://img.qammunity.org/2021/formulas/mathematics/college/6a9rjf8jdfm5cce8iqfg0ppxyeqtmeep11.png)
Then the solution to the initial value problem is
![\mathbf x=14e^t\begin{bmatrix}1\\-1\end{bmatrix}-9e^(2t)\begin{bmatrix}1\\-2\end{bmatrix}+te^t\begin{bmatrix}1\\-1\end{bmatrix}](https://img.qammunity.org/2021/formulas/mathematics/college/qd1mluf2sty5zuk2c7fcvwmfmbyrothvbv.png)
![\mathbf x=\begin{bmatrix}14e^t-9e^(2t)+te^t\\-14e^t-18e^(2t)-te^t\end{bmatrix}](https://img.qammunity.org/2021/formulas/mathematics/college/t6lkewryw2ldoo07a7ritp2fx4yavo22uk.png)