54.9k views
2 votes
HELPPPPP!!!! tHIS IS REALLY HARD!!!!!

HELPPPPP!!!! tHIS IS REALLY HARD!!!!!-example-1
User Rick Eyre
by
4.0k points

2 Answers

2 votes

Answer: J.

Step-by-step explanation: -tanx i believe

User Calvinkrishy
by
4.2k points
7 votes

Answer:

H: 2

Explanation:


(√(1-\cos ^2\left(x\right)))/(\sin \left(x\right))+(√(1-\sin ^2\left(x\right)))/(\cos \left(x\right))

LCM is
\cos \left(x\right)\sin \left(x\right)

Adjust fractions:


(√(1-\cos ^2\left(x\right))\cos \left(x\right))/(\sin \left(x\right)\cos \left(x\right))+(√(1-\sin ^2\left(x\right))\sin \left(x\right))/(\cos \left(x\right)\sin \left(x\right))

Combine:


(√(1-\cos ^2\left(x\right))\cos \left(x\right)+√(1-\sin ^2\left(x\right))\sin \left(x\right))/(\sin \left(x\right)\cos \left(x\right))

--------------------------------------------------------

We will take a look at
√(1-\cos ^2\left(x\right))\cos \left(x\right).

Using the identity that
\cos ^2\left(x\right)+\sin ^2\left(x\right)=1, we know that
1-\cos ^2\left(x\right)=\sin ^2\left(x\right).

Therefore,
√(1-\cos ^2\left(x\right))\cos \left(x\right)=√(\sin ^2\left(x\right))\cos \left(x\right)=\sin \left(x\right)\cos \left(x\right)

-----------------------------------------------------------------------------------------------

Similarly,
1-\sin ^2\left(x\right)=\cos ^2\left(x\right) so


√(1-\sin ^2\left(x\right))\sin \left(x\right)=√(\cos ^2\left(x\right))\sin \left(x\right)=\cos \left(x\right)\sin \left(x\right)

-------------------------------------------------------------------------------

We will finally end up with


(\sin \left(x\right)\cos \left(x\right)+\cos \left(x\right)\sin \left(x\right))/(\sin \left(x\right)\cos \left(x\right))

Add:


(2\sin \left(x\right)\cos \left(x\right))/(\sin \left(x\right)\cos \left(x\right))

Cancel out sin(x):


(2\cos \left(x\right))/(\cos \left(x\right))

Cancel out cos(x):


2

User Bjarki B
by
4.5k points