Answer:
68°
Explanation:
DE ║ BC
So, ∠DBC = ∠ADE = 62° (∵ Corresponding Angles are equal )
In triangle DEC ,
∠EDC+ ∠ECD = ∠AED (∵ Exterior Angle Sum Property of a triangle )
⇒ ∠AED = 23° + 27° = 50°
Now in triangle AED ,
∠EAD + ∠ADE + ∠AED = 180°
⇒ x° + 62° + 50° = 180°
⇒x° = 180° - 112° = 68°
x = 68°
∠ DCB = ∠ EDC = 27° ( alternate angles )
Thus ∠ ECB = 23° + 27° = 50°
The sum of the 3 angles in a triangle = 180°, thus
x = 180° - (62 + 50)° = 180° - 112° = 68°
4.4m questions
5.7m answers