41.1k views
0 votes
URGENT HELP ME PLEASE

1) Develop the LOGARITHM PROPERTIES AND SOLVE THE EQUATIONS:


a-) log3 (81.3) =

b-) log5 (625.25) =

c-) log2 64/8 =

d-) log464/16 =

e-) log6 (364) =

f-) log (1003) =

User BattlFrog
by
3.8k points

1 Answer

4 votes

Answer:

(a)
\log_3((81)/(3))=3

(b)
\log_5((625)/(25))=2

(c)
\log_2((64)/(8))=3

(d)
\log_4((64)/(16))=1

(e)
\log_6(36^4)=8

(f)
\log(100^3)=6

Explanation:

Let as consider the given equations are
\log_3((81)/(3))=?,\log_5((625)/(25))=?,\log_2((64)/(8))=?,\log_4((64)/(16))=?,\log_6(36^4)=?,\log(100^3)=?.

(a)


\log_3((81)/(3))=\log_3(27)


\log_3((81)/(3))=\log_3(3^3)


\log_3((81)/(3))=3
[\because \log_aa^x=x]

(b)


\log_5((625)/(25))=\log_5(25)


\log_5((625)/(25))=\log_5(5^2)


\log_5((625)/(25))=2
[\because \log_aa^x=x]

(c)


\log_2((64)/(8))=\log_2(8)


\log_2((64)/(8))=\log_2(2^3)


\log_2((64)/(8))=3
[\because \log_aa^x=x]

(d)


\log_4((64)/(16))=\log_4(4)


\log_4((64)/(16))=1
[\because \log_aa^x=x]

(e)


\log_6(36^4)=\log_6((6^2)^4)


\log_6(36^4)=\log_6(6^8)


\log_6(36^4)=8
[\because \log_aa^x=x]

(f)


\log(100^3)=\log((10^2)^3)


\log(100^3)=\log(10^6)


\log(100^3)=6
[\because \log10^x=x]

User Kulesa
by
4.5k points