209k views
5 votes
What is the sum of the first 10 terms for 1 + 4 + 16 +64 + ...?

2 Answers

13 votes

Answer:

349525

Explanation:

Sum of a Geometric Sequence

  • Sₙ = a(rⁿ - 1) / (r - 1)

Taking :

  • a = 1
  • r = 4
  • n = 10

Solving

  • S₁₀ = 1(4¹⁰ - 1) / 4 - 1
  • S₁₀ = 1048576 - 1 / 3
  • S₁₀ = 1048575/3
  • S₁₀ = 349525
User Luckyfool
by
3.0k points
13 votes


\huge\color{pink}\boxed{\colorbox{Black}{♔︎Answer♔︎}}

349525

Explanation:


= \textsf{\underline{\large{To find :-}}}

The sum of first 10 terms


\textsf{\underline{\large{Given :-}}}

a = 1

r = 4


\sf{ \huge{ \underline{ \underline {Solution :-}}}}


\sf S_n = \frac{a( {r}^(n) - 1)}{(r - 1)} ,if \: r ≠ 1

here n = 10

we just need to substitute the value


\sf \implies S_(10) = \frac{1( {4}^(10) - 1) }{(4 - 1)} \\ \\ \sf \implies S_(10) = \frac{ {4}^(10) - 1 }{3} \\ \\ \sf \implies S_(10) = (1048576 - 1)/(3) \\ \\ \sf \implies S_(10) = (1048575)/(3) \\ \\ \sf { \red{ \implies S_(10) = 349525}}

User Ersen
by
4.3k points