124k views
0 votes
Solve (5√16)^1 using prime factorisation.​

User Mob
by
4.2k points

1 Answer

12 votes

Answer:


2^{(4)/(5)}

Explanation:

Factor 16 using prime factorisation:

16 ÷ 2 = 8

8 ÷ 2 = 4

4 ÷ 2 = 2

⇒ 16 = 2⁴

Substitute 16 for 2⁴:


\implies (\sqrt[5]{16})^1=(\sqrt[5]{2^4})^1


\textsf{Apply exponent rule}\quad \sqrt[n]{a^b} =a^{(b)/(n)}:


\implies (\sqrt[5]{2^4})^1=(2^{(4)/(5)})^1


\textsf{Apply exponent rule} \quad (a^b)^c=a^(bc):


\implies (2^{(4)/(5)})^1=2^{(4)/(5)}

User Alfran
by
4.2k points