Answer:
All real numbers ( -∞ ,∞)
Explanation:
Simplify
![-2(x+3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/dnnicn4cdn7f18uy9kce13dog7i1ffy5lg.png)
Apply the distributive property.
![-2x-6=-2(x+1)-4](https://img.qammunity.org/2021/formulas/mathematics/high-school/2x262s5gdcwbnyry8uwdrxcsqeebvc99vs.png)
Simplify
![-2(x+1)-4](https://img.qammunity.org/2021/formulas/mathematics/high-school/4lh8fzmcospu15jwr05ceo39qdae2c8jwq.png)
![-2x-6=-2x -6](https://img.qammunity.org/2021/formulas/mathematics/high-school/q9kjzk04r2qq7uy0dpsa463kamcb7l7by9.png)
Move all terms containing x to the left side of the equation.
Add 2 x to both sides of the equation.
![-2x-6+2x=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/z6zog6tedo2v7sakprvfu98s4yxl64zgak.png)
Combine the opposite terms in
![-2x-6+2x](https://img.qammunity.org/2021/formulas/mathematics/high-school/pyzb42y51djceckwzuj0qxx7l5cnhz69r0.png)
add
and
![2x](https://img.qammunity.org/2021/formulas/mathematics/middle-school/cyg7d2oalz2m0jqsj2hy58xor26uts979u.png)
![0-6= -6](https://img.qammunity.org/2021/formulas/mathematics/high-school/d0m0ig8kugyl7r6ioywfo2kgcpk0hkviym.png)
![-6= -6](https://img.qammunity.org/2021/formulas/mathematics/high-school/8me0bk9um75snkt5526flefv7k0td2c1md.png)
Since
, the equation will always be true for any value of x . All real numbers
The result can be shown in multiple forms.
All real numbers
Interval Notation:
( − ∞ , ∞ )