Answer:
![(7)/(√(3))](https://img.qammunity.org/2021/formulas/mathematics/college/1sapl0oo9hpy1dc6xqr9lnxzpdbgh9oq2h.png)
Explanation:
The shortest distance d, of a point (a, b, c) from a plane mx + ny + tz = r is given by:
--------------------(i)
From the question,
the point is (5, 0, -6)
the plane is x + y + z = 6
Therefore,
a = 5
b = 0
c = -6
m = 1
n = 1
t = 1
r = 6
Substitute these values into equation (i) as follows;
![d = |(((1*5) + (1*0) + (1 * (-6)) - 6))/(√(1^2 + 1^2 + 1^2)) |](https://img.qammunity.org/2021/formulas/mathematics/college/w8fgtgqtwehx4cd0wr8ic0jukqrw9t1oir.png)
![d = |(((5) + (0) + (-6) - 6))/(√(1 + 1 + 1)) |](https://img.qammunity.org/2021/formulas/mathematics/college/epaom3m404um1yse0f33qb2xevg9ujn2a8.png)
![d = |((-7))/(√(3)) |](https://img.qammunity.org/2021/formulas/mathematics/college/isgz1mamu92nhqeljmirn15ssx9hyn23v5.png)
![d = (7)/(√(3))](https://img.qammunity.org/2021/formulas/mathematics/college/spkq0nkmixmij2m0r4preet6dmo33p4nfd.png)
Therefore, the shortest distance from the point to the plane is
![d = (7)/(√(3))](https://img.qammunity.org/2021/formulas/mathematics/college/spkq0nkmixmij2m0r4preet6dmo33p4nfd.png)