220k views
4 votes
Find the Rectangular form of the following phasors?

1. P =10
2. P = 5
3. P = 25
4. P = 54
5. P = 65
6. P = 95
7. P = 250
8. P = 8
9. P = 35
10. P = 150

1 Answer

4 votes

Answer:

The angles are missing in the question.

The angles are :

45, 30, 60, 90, -34, -56, 20, -42, -65, -15

P=10, P=5, P=25, P=54, P=65, P=95, P=250, P=8, P=35, P=150

Step-by-step explanation:

1. P = 10, θ = 45° rectangular coordinates

x = r cosθ , y = r sinθ

So, rectangular form is x + iy

x = P cosθ = 10 cos 45°

= 7.07

y =P sinθ = 10 sin 45°

= 7.07

Therefore, rectangular form

x + iy = 7.07 + i (7.07)

2. P = 5 , θ = 30°

x = 5 cos 30° = 4.33

y = 5 sin 30° = 2.5

So, (x+iy) = 4.33 + i (2.5)

3. P = 25 , θ = 60°

x = 25 cos 60° = 12.5

y = 25 sin 60° = 21.65

So, (x+iy) = 12.5 + i (21.65)

4. P = 54 , θ = 90°

x = 54 cos 90° = 0

y = 54 sin 90° = 54

So, (x+iy) = 0+ i (54)

5. P = 65 , θ = -34°

x = 65 cos (-34°) = 53.88

y = 65 sin (-34°) = -36.34

So, (x+iy) = 53.88 - i (36.34)

6. P = 95 , θ = -56°

x = 95 cos (-56)° = 53.12

y = 95 sin (-56)° = -78.75

So, (x+iy) = 53.12 - i (78.75)

7. P = 250 , θ = 20°

x = 250 cos 20° = 234.92

y = 250 sin 20° = 85.5

So, (x+iy) = 234.92 + i (85.5)

8. P = 8 , θ = (-42)°

x = 8 cos (-42)° = 5.94

y = 8 sin (-42)° = -5.353

So, (x+iy) = 5.94 - i (5.353)

9. P = 35 , θ = (-65)°

x = 35 cos (-65)° = 14.79

y = 35 sin (-65)° = -31.72

So, (x+iy) = 14.79 - i (31.72)

10. P = 150 , θ = (-15)°

x = 150 cos (-15)° = 144.88

y = 150 sin (-15)° = -38.82

So, (x+iy) = 144.88 - i (38.82)

User Nole
by
6.1k points