21.9k views
0 votes
Which represents the inverse of the function f(x) = 4x?

h(x)=x+4
h(x)=x-4
h(x)=3/4x
h(x)=1/4x

User Jon Watson
by
5.2k points

2 Answers

4 votes

Answer:

fourth option

Explanation:

let y = f(x) and rearrange making x the subject, that is

y = 4x ( divide both sides by 4 )


(y)/(4) = x

Change y back into terms of x with x as the inverse function, thus

h(x) =
(x)/(4) =
(1)/(4) x

User Balint Domokos
by
5.3k points
4 votes

Answer:

h(x)=1/4x

Explanation:

To find the inverse of a function, switch the "x" and the "y". The f(x) can be considered as "y".


f(x)=4x


y=4x


x=4y

We want to isolate y. 4 and y are being multiplied. The inverse of multiplication is division. Divide both sides of the equation by 4.


(x)/(4) =(4y)/(4)


(x)/(4) =y

x/4 can be rewritten as 1/4x.


y=(1)/(4) x


h(x)=(1)/(4) x

The inverse of the function f(x)=4x is h(x)=1/4x

User Brutuscat
by
5.3k points