We're given the sequence,
![\{b_n\}_(n=3)^\infty=\{25,39,55,73,\ldots\}](https://img.qammunity.org/2021/formulas/mathematics/college/lb04948y44s2jzabdo9pcdn6bn0su3kbet.png)
Since
is quadratic,
should also be quadratic. Replace
with
(if
, then
) in the definition of
, and let
denote the new coefficients:
![n^2+7n-5=a(n-2)^2+b(n-2)+c](https://img.qammunity.org/2021/formulas/mathematics/college/7xot1m1fph41c8a4yj3egr2krs1qoq47vs.png)
Expand the right side:
![n^2+7n-5=an^2+(-4a+b)n+(4a-2b+c)](https://img.qammunity.org/2021/formulas/mathematics/college/hrzpgrtcokm8k71exnb6epfeyalwdp8ezt.png)
Coefficients of terms with the same degree should be the same:
![\begin{cases}a=1\\-4a+b=7\\4a-2b+c=-5\end{cases}\implies a=1,b=11,c=13](https://img.qammunity.org/2021/formulas/mathematics/college/fm28xni6gmpjwn343vp61vrx09mer4j3ib.png)
So the new sequence is the same, with
![\{a_n\}_(n=1)^\infty=\{25,39,55,73,\ldots\}](https://img.qammunity.org/2021/formulas/mathematics/college/7gi6bnzu75cexaaiv1yiys7ilex062ukvj.png)